如今,越来越多医疗人工智能下到基层。广东省发布了《促进“互联网+医疗健康”发展行动计划(2018-2020)》。嗅觉敏锐的资本早已抢滩人工智能医疗市场,并推动成熟的产品走向基层医疗机构。
政策支撑,资本市场追捧,更多基层医院被圈入,成为AI医疗的试验田。站在风口上,AI医疗究竟存在哪些软肋?在缺乏商业模式和有效性数据的背景下,AI医疗究竟如何才能站稳脚跟?南方日报记者进行了调查。
AlphaGo的余波荡起AI医疗
在白云街社区卫生服务中心2楼的AI眼科诊室内,居民坐在智能机器前,下巴往上一靠,双眼直视前方。数分钟后,一份白内障诊断报告就出炉了。这是“AI眼科医生”通常的运作模式。截至8月底,它为社区内400多位居民提供服务,发现疑似白内障病例约30%。中山大学中山眼科中心医生将对疑似病例进行远程诊断。有需要进一步治疗的患者,可到上级医院让专科医生作深入检查。
项目负责人林浩添教授是中山大学中山眼科中心白内障专科医生。2012年起,他将研究重心放在了医疗大数据和人工智能领域,努力寻找一种更有效的致盲眼病防治手段,为基层医疗机构赋能。数年前,这一想法是疯狂的。林浩添说,在项目研发的起步阶段,很少人能理解医疗大数据的价值和挖掘技术,没有人想到机器人真的能看病。
随着AlphaGo击败人类职业围棋选手,方向变了。人工智能不仅战胜围棋世界冠军,也正式闯入大众视野,逐步被各个领域所接受。在此之前,敏锐的资本早已捕捉新趋势,布局人工智能市场。得知医疗资源失衡的现状,他们怀着“发现新大陆”的心情,以AI为马,跑入了医疗市场。
AI医疗的火爆也得益于政策红利。6月14日,广东省人民政府办公厅关于《促进“互联网+医疗健康”发展行动计划(2018-2020)》正式发布,提出了“人工智能下基层”的规定。有了政策的加持,AI医疗像一辆火力十足的汽车,冲向了基层医疗机构。7月4日,互联网+健康扶贫AI医生村村通启动仪式在广州召开。
“AI医生是好老师。”邓金科是广东省阳山县的一名村医。在过去,他只能看感冒、发烧,遇到棘手难题,就推荐村民到外就医。但现在有了智能医生,村民只需在手机上问诊。遇上拿不准的疾病,邓金科还能用文字、图片等方式传给广东省网络医院的医生。如今,AI医生能看200多种常见病,覆盖了普通社区医院日常诊断的90%的病种。
在基层,医疗人工智能填补了城乡医疗水平间的差距,使得当地居民享受同质化的医疗服务。但在三甲医院,它则被赋予了解放医生的使命。
广东药科大学附属第一医院病理科启用了AI远程病理诊断系统。短短几分钟内,它就能识别区分、筛选并标记出可疑的、异型的、核大的细胞。病理医生只需重点关注可疑细胞,就能写诊断报告。这一技术的运用将病理医生的工作效率提高了整整20倍。
今年6月,中山大学附属第六医院启动“沃森胃肠疾病人工智能医学中心”,把人工智能运用到临床诊疗中,让沃森推荐几个最有可能的治疗方案,供临床医生选择,最终实现个性化的治疗。
AI医疗究竟是什么?每一个人有自己的答案。对白云街社区卫生服务中心的管理者陈健芳来讲,它填补了基层眼科医生的空白,节省了中心每年数十万元劳务支出,也让社区居民不出远门就能筛查眼科疾病。
在广州市妇女儿童医疗中心院长夏慧敏看来,所谓AI医疗,其实是人类医生经验变成了一种规则,这种规则在系统里变成了一种流程,这种流程最后形成一种基于人类智慧结晶的辅助诊断方法。
现在,医疗界迎来了一股人工智能的旋风。几乎每个人都在讨论人工智能,拼命地追赶行业潮流。
“数据孤岛”成掣肘因素
“一个机器能查出白内障吗?”在社区筛查工作开始前,陈健芳总是遇到如此质疑。阻力不小。后来,他们说服居民到社区医院进行尝试筛查,居民也在新的体验中逐步接受了医疗新技术和新服务模式。
疾病智能筛查技术的推广之路不易。一方面是居民的半信半疑,另一方面是医生的适应难题。医疗数据是人工智能的“营养来源”。以AI眼科医生为例,在下基层前,它的成长依靠的是中山眼科中心的医疗数据。在此过程中,研发人员清洗、标注数据,建立数据模型,赋予它诊断疾病的功能。而在闯入基层医疗机构后,原本的数据模型还适用吗?